Open lectures session

Symposium online and in Stockholm to present the original method and the partners

Open session within the framework of the NanoVIB Horizon 2020 project


Near-IR Nanoscopy and Vibrational Microscopy


Read more at:

16th May 2023, FB54, Albanova University Center, Stockholm and on Zoom at

https://kth-se.zoom.us/j/62429164481 


Program
13:00 - 13:05 :

Welcome, Introduction and brief project presentation

Jerker Widengren, KTH Royal Institute of Technology, Stockholm

13:05 - 13:55 :     

MINFLUX nanoscopy and related matters

Stefan W. Hell, Max Planck Institute for Multidisciplinary Sciences,

Göttingen & Max Planck Institute for Medical Research, Heidelberg

14:00 - 15:00 :

Next generation super-resolution MINFLUX platform

Andreas Schönle, Abberior Instruments GmbH, Göttingen 

Single photon counting detector arrays

Michel Antolovic, PI Imaging Technology SA, Lausanne

Lasers for Stimulated Raman Scattering (SRS) imaging

Ingo Rimke, Angewandte Physik & Elektronik (APE) GmbH, Berlin

Multimodal instrument integration

Alexander Egner, Institut für Nanophotonik (IFNANO), Göttingen

Fluorophore photophysics and imaging procedures

Jerker Widengren, KTH Royal Institute of Technology, Stockholm

Biomedical perspectives and lead application

Birgitta Henriques-Normark, Karolinska Institutet, Stockholm 


MINFLUX nanoscopy and related matters

Stefan W. Hell

Max Planck Institute for Multidisciplinary Sciences, Göttingen & Max Planck Institute for Medical Research, Heidelberg

Abstract

I will show how an in-depth description of the basic principles of diffraction-unlimited fluorescence microscopy (nanoscopy) [1-3] has spawned a new powerful superresolution concept, namely MINFLUX nanoscopy [4]. MINFLUX utilizes a local excitation intensity minimum (of a doughnut or a standing wave) that is targeted like a probe in order to localize the fluorescent molecule to be registered. In combination with single-molecule switching for sequential registration, MINFLUX [4-7] has obtained the ultimate (super)resolution: the size of a molecule. MINFLUX nanoscopy, providing 1–3 nanometer resolution in fixed and living cells, is presently being established for routine fluorescence imaging at the highest, molecular- size resolution levels. Relying on fewer detected photons than popular camera-based localization, MINFLUX and related MINSTED [8,9] nanoscopies are poised to open a new chapter in the imaging of protein complexes and distributions in fixed and living cells. MINFLUX is also set to transform the single-molecule analysis of dynamic processes, as already demonstrated by tracking in detail the unhindered stepping of the motor protein kinesin- 1 on microtubules at up to physiological ATP concentrations [10], and providing answers to longstanding questions with respect to the kinesin-1 mechanochemical cycle.

  1. [1]  Hell, S.W., Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780-782 (1994).

  2. [2]  Hell, S.W. Far-Field Optical Nanoscopy. Science 316, 1153-1158 (2007).

  3. [3]  Hell, S.W. Microscopy and its focal switch. Nat. Methods 6, 24-32 (2009).

  4. [4]  Balzarotti, F., Eilers, Y., Gwosch, K. C., Gynnå, A. H., Westphal, V., Stefani, F. D., Elf, J., Hell, S.W. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606-612 (2017).

  5. [5]  Eilers, Y., Ta, H., Gwosch, K. C., Balzarotti, F., Hell, S. W. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. PNAS 115, 6117-6122 (2018).

  6. [6]  Gwosch, K. C., Pape, J. K., Balzarotti, F., Hoess, P., Ellenberg, J., Ries, J., Hell, S. W. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17, 217–224 (2020).

  7. [7]  Schmidt, R., Weihs, T., Wurm, C. A., Jansen, I., Rehman, J., Sahl, S. J., Hell, S. W. (2021) MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun. 12:1478.

  8. [8]  Weber, M., Leutenegger, M., Stoldt, S., Jakobs, S., Mihaila, T. S., Butkevich, A. N., Hell, S. W. MINSTED fluorescence localization and nanoscopy. Nat. Photon. 15, 361-366 (2021).

  9. [9]  Weber, M., von der Emde, H., Leutenegger, M., Gunkel, P., Sambandan, S., Khan, T. A., Keller- Findeisen, J., Cordes, V. C., Hell, S.W. MINSTED nanoscopy enters the Ångström localization range. Nat. Biotechnol., 41, 569-576 (2023).

  10. [10]  Wolff, J.O., Scheiderer, L., Engehard, T., Engelhardt, J., Matthias, J., Hell, S.W. MINFLUX dissects the unimpeded walking of kinesin-1
    Science, 379, 1004-1010 (2023).